Jetpack Academy
Login
Sign In
Reset Password
Register
  • Home
  • Courses
  • Kits
  • About
  • Get in touch
  • Log In
  • 1 item
$49.00
Robotics: Learn by building, part 3: Robotic Drives & Physics
Stephen Orsatti
61
play-sharp-fill

Building on the knowledge you gained in the Analog Electronics and Digital Electronics modules, you’ll open even more doors to diverse careers and hobbies by learning how to physically move robots and mechatronics. Robotic drives and physics are intimately intertwined – almost the same topic in fact. And think about all the things around you that are moved or operated automatically: from the furnace and air handlers in your office building, to so many functions in your car, and then the booming robotics field in industry, mass production, even entertainment! People are needed who understand how those robots work in order to design, install, program and maintain those robots. Maybe you’re interested in building a submarine robot to dive to shipwrecks or places normally unreachable by humans. We’ll actually look at a real-world case study and use our new-found knowledge of physics to design a submarine robot to operate at depths of 600 meters or more. Or perhaps you are just interested in competition robotics like the gladiator-style battle robots which go head-to-head to destroy each other. 3D printers (of which we design and build one in course 4) are essentially robots! All of these topics involve a good understanding of robotic drive systems and physics which you will learn in this course.

With over 21,000 students enrolled in the first two courses in the “Robotics: Learn by building” series,  more than 4,000 five star ratings in the first course alone, students aged 8 to 60+ have enjoyed the course series and its projects.

No prior knowledge of mechanics, physics or robotics is needed. You will need a good understanding of electricity & electronics and digital control and some basic math. If you have completed course 1 “Electricity and Electronics” and course 2 “Digital Electronics” you have the background you need as we will be using those skills in this course to drive different kinds of electric motors. All courses have captions for the hearing impaired.

Course materials:

You will need the analog electronic parts and a breadboard, which you can purchase as an accompanying kit (i.e., the Analog Electronics Kit from module I) or provide your own, as well as the parts from the digital electronics kit (i.e., the Digital Electronics Kit from module II) or provide your own Arduino controller board and some logic-level, high power MOSFET’s.

You will also need the Robotic Drives & Physics Experimenter’s kit which again you can purchase as an accompanying kit or provide your own parts. The first lesson is a walk-through of what is in the kit and acts as a parts list for this module.

This series of “Robotics: Learn by building” modules has an end-goal focus on the diverse field of robotics. In module I we learned the basics of electricity and electronics. In this module II you further developed your knowledge and skills to include digital electronics and practice your skills on real-life digital components. In this third course you will learn physics principles (from simple to very complex) with a specific goal of understanding and even designing your own drive systems for robots. You will learn details about different robotic drive systems you will see in commercial, industrial robots like how timing belt drives work and why they are so important in robotics, as well as the more esoteric drives like the harmonic drive – what it is an how that amazing system works.

We will even look at a real-life case study as we design a submarine robot, remotely operated and able to withstand the bone-crushing operating depths of over 600 meters minimum. The unique challenges we will face will build up your knowledge so that you too can design sea-floor robots facing harsh environments to perform inspection, welding or maintenance on submarine pipes or cables.

This course is the prerequisite for the module IV course where you’ll learn prototyping skills, and gain a wide variety of knowledge and skills so you can actually build your own robots and manufacture your own parts. In module IV, you’ll culminate all you’ve learned so far as you build a 3D printer from scratch, hook it up to a desktop computer and make your own plastic parts. The 3D printer is, in effect, a robot which you can then use to make parts for your other robot designs. In module V you can take your robot design and construction skills to the next level with a hands-on approach to autonomous robotic systems: learning about various sensors to know where you are and what your robot is doing, GPS navigation, basic artificial intelligence, powerful microchips known as FPGA’s where you literally design a custom circuit on the chip, vision systems and more.

Lesson overview:

  • In this course we’ll be covering:
  • Simple machines (which all come into play in surprising ways you probably haven’t seen before)
  • Designing an arm robot
  • The toggle mechanism (again, comes into play in a ridiculous number of surprising ways you probably haven’t seen before)
  • harmonic drives, cycloidal drives, epicyclic drives, traction drives
  • strength of materials & construction challenge
  • case study: design challenges of a deep-submarine, remotely operated vehicle
  • hydraulics & pneumatics (including building your own)
  • air & hydraulic muscles, muscle wire
  • servos (speed, pressure, force, position, etc…)
  • DC motors, BLDC motors, BLDC servo motors, stepper motors, AC motors, AC servo motors, single and three phase power, electrical generation
  • frequency drives, PWM AC signal generation
  • regenerative / rheostatic / dynamic braking, looking at electric vehicle design and locomotive design
  • counter-force systems you will encounter in industrial robots
  • safety around robot systems, in industry and hobby
  • robot designs: articulated arm, gantry, spine, collaborative
  • case study: combat robots

and more!

Take This Course $49.00

Students

Lessons

  • Robotic Drives & Physics: Whatcha gonna need for this course
  • Physics Kit Table Assembly
  • Free preview – Simple machines: Levers, what they are and why they are important
  • Gears, part 1
  • Assembling a gear drive
  • Mechanical mayhem challenge #1: friction drive
  • Strap drives
  • Arm robot design challenge #1, part 1
  • Arm robot design challenge #1, part 2
  • Backlash: the arch nemesis of Robotics
  • The wedge / thread / ball screw drive
  • Anti-backlash gears – Free Preview!
  • Brushed DC motors
  • Forklift DC motors – a real world example – Free Preview!
  • Back EMF
  • Toggle Mechanism & building a robot gripper – Free Preview!
  • Electrical generation & 3 phase AC power
  • Regenerative Braking, part I
  • Regenerative braking, part II: A practical approach
  • Servos & Feedback – Part 1
  • Servos & Feedback, part II
  • Stepper motors, part 1 – Free Preview!
  • Stepper motors II
  • Brushless DC motors (BLDC)
  • Building our 3 phase H-bridge
  • Driving a BLDC in closed loop reading Hall effect sensors
  • PWMAC – pseudo AC sine waves using PWM – Free Preview!
  • Hacking a BLDC as an AC servo motor Part 1
  • Hacking a BLDC as an AC servo motor Part 2
  • Submarine Robot Design: A Case Study, part 1
  • Submarine Robot Case Study, part 2: Buoyancy control
  • Submarine Robot Design, Case study part 3: buoyancy and density
  • Submarine robot case study, part 4: Pressure Vessels
  • Free preview! Strain Wave, aka, Harmonic drives
  • The Cycloidal Drive – Free Preview!
  • Robot Safety & Interlockings – Free Preview!
  • AC Motors, Part I
  • AC Motors, Part II: Synchronous & Asynchronous motors – Free Preview!
  • Dynamic brakes part 1: DC dynamics – Free preview!
  • AC Dynamic braking
  • Air & Fluid Power SAFETY – Free Preview!
  • Physics Kit Backboard assembly, Part I
  • Physics Kit Backboard assembly, Part II
  • Air tank assembly – Physics Kit
  • Assembling Power Cylinders – Physics Kit
  • Extra Parts with the power cylinders
  • Homebuilt power cylinder tear-down – Free Preview!
  • Power Cylinder Physics
  • Solenoid Valves
  • Using our pneumatic system
  • Measuring Force from Power Cylinders
  • Air Muscles
  • Counterweights & Springs
  • Springs & Animatronics – Free Preview!
  • Resolvers: An introduction
  • Reading Resolvers with Hysteresis

Related Courses

Free
Prototyping & 3D printer – Robotics, learn by building part IV
Stephen Orsatti
6
$49.00
Robotics: Learn by building Module 2: Digital Electronics
Stephen Orsatti
126
$49.00
Robotics: Learn by Building Part 1: Electricity and Electronics
Stephen Orsatti
264
Spinning wool – learn fast by doing
Tammy Juby
1
Jetpack Academy © 2016
  • Home
  • About
  • Courses
  • Products
  • Log In
  • Register
  • Privacy Policy
  • Privacy Tools
  • Get in touch

We are using cookies on our website

Please confirm, if you accept our tracking cookies. You can also decline the tracking, so you can continue to visit our website without any data sent to third party services.